Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Clin Microbiol ; : e0126122, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: covidwho-2137404

RESUMEN

The molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is key for clinical management and surveillance. Funded by the European Centre for Disease Prevention and Control, we conducted an external quality assessment (EQA) on the molecular detection and variant typing of SARS-CoV-2 that included 59 European laboratories in 34 countries. The EQA panel consisted of 12 lyophilized inactivated samples, 10 of which were SARS-CoV-2 variants (Alpha, Beta, Gamma, Delta, Epsilon, Eta, parental B.1 strain) ranging from 2.5 to 290.0 copies/µL or pooled respiratory viruses (adenovirus, enterovirus, influenza virus A, respiratory syncytial virus, or human coronaviruses 229E and OC43). Of all participants, 72.9% identified the presence of SARS-CoV-2 RNA correctly. In samples containing 25.0 or more genome copies/µL, SARS-CoV-2 was detected by 98.3% of the participating laboratories. Laboratories applying commercial tests scored significantly better (P < 0.0001, Kruskal-Wallis test) than those using in-house assays. Both the molecular detection and the typing of the SARS-CoV-2 variants were associated with the RNA concentrations (P < 0.0001, Kruskal-Wallis test). On average, only 5 out of the 10 samples containing different SARS-CoV-2 variants at different concentrations were correctly typed. The identification of SARS-CoV-2 variants was significantly more successful among EQA participants who combined real-time reverse transcription polymerase chain reaction (RT-PCR)-based assays for mutation detection and high-throughput genomic sequencing than among those who used a single methodological approach (P = 0.0345, Kruskal-Wallis test). Our data highlight the high sensitivity of SARS-CoV-2 detection in expert laboratories as well as the importance of continuous assay development and the benefits of combining different methodologies for accurate SARS-CoV-2 variant typing.

2.
Eur Respir J ; 60(6)2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1902346

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilises the angiotensin-converting enzyme 2 (ACE2) transmembrane peptidase as cellular entry receptor. However, whether SARS-CoV-2 in the alveolar compartment is strictly ACE2-dependent and to what extent virus-induced tissue damage and/or direct immune activation determines early pathogenesis is still elusive. METHODS: Spectral microscopy, single-cell/-nucleus RNA sequencing or ACE2 "gain-of-function" experiments were applied to infected human lung explants and adult stem cell derived human lung organoids to correlate ACE2 and related host factors with SARS-CoV-2 tropism, propagation, virulence and immune activation compared to SARS-CoV, influenza and Middle East respiratory syndrome coronavirus (MERS-CoV). Coronavirus disease 2019 (COVID-19) autopsy material was used to validate ex vivo results. RESULTS: We provide evidence that alveolar ACE2 expression must be considered scarce, thereby limiting SARS-CoV-2 propagation and virus-induced tissue damage in the human alveolus. Instead, ex vivo infected human lungs and COVID-19 autopsy samples showed that alveolar macrophages were frequently positive for SARS-CoV-2. Single-cell/-nucleus transcriptomics further revealed nonproductive virus uptake and a related inflammatory and anti-viral activation, especially in "inflammatory alveolar macrophages", comparable to those induced by SARS-CoV and MERS-CoV, but different from NL63 or influenza virus infection. CONCLUSIONS: Collectively, our findings indicate that severe lung injury in COVID-19 probably results from a macrophage-triggered immune activation rather than direct viral damage of the alveolar compartment.


Asunto(s)
COVID-19 , Gripe Humana , Adulto , Humanos , Enzima Convertidora de Angiotensina 2 , Pulmón/patología , Macrófagos Alveolares/metabolismo , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Tropismo Viral
3.
Influenza Other Respir Viruses ; 16(5): 854-857, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1822050

RESUMEN

Based on our national outpatient sentinel surveillance, we have developed a novel approach to determine respiratory syncytial virus (RSV) epidemic seasons in Germany by using RSV positivity rate and its lower limit of 95% confidence interval. This method was evaluated retrospectively on nine RSV seasons, and it is also well-suited to describe off-season circulation of RSV in near real time as observed for seasons 2020/21 and 2021/22 during the COVID-19 pandemic. Prospective application is of crucial importance to enable timely actions for health service delivery and prevention.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , COVID-19 , Intervalos de Confianza , Alemania/epidemiología , Humanos , Lactante , Pandemias , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/genética , Estudios Retrospectivos , Estaciones del Año
4.
Epidemiol Infect ; 149: e226, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1537267

RESUMEN

The corona virus disease-2019 (COVID-19) pandemic began in Wuhan, China, and quickly spread around the world. The pandemic overlapped with two consecutive influenza seasons (2019/2020 and 2020/2021). This provided the opportunity to study community circulation of influenza viruses and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in outpatients with acute respiratory infections during these two seasons within the Bavarian Influenza Sentinel (BIS) in Bavaria, Germany. From September to March, oropharyngeal swabs collected at BIS were analysed for influenza viruses and SARS-CoV-2 by real-time polymerase chain reaction. In BIS 2019/2020, 1376 swabs were tested for influenza viruses. The average positive rate was 37.6%, with a maximum of over 60% (in January). The predominant influenza viruses were Influenza A(H1N1)pdm09 (n = 202), Influenza A(H3N2) (n = 144) and Influenza B Victoria lineage (n = 129). In all, 610 of these BIS swabs contained sufficient material to retrospectively test for SARS-CoV-2. SARS-CoV-2 RNA was not detectable in any of these swabs. In BIS 2020/2021, 470 swabs were tested for influenza viruses and 457 for SARS-CoV-2. Only three swabs (0.6%) were positive for Influenza, while SARS-CoV-2 was found in 30 swabs (6.6%). We showed that no circulation of SARS-CoV-2 was detectable in BIS during the 2019/2020 influenza season, while virtually no influenza viruses were found in BIS 2020/2021 during the COVID-19 pandemic.


Asunto(s)
COVID-19/epidemiología , Gripe Humana/epidemiología , Vigilancia de Guardia , COVID-19/diagnóstico , Alemania/epidemiología , Humanos , Incidencia , Gripe Humana/diagnóstico , Orofaringe/virología , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Orthomyxoviridae/aislamiento & purificación , ARN Viral/genética , Estudios Retrospectivos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Estaciones del Año
5.
Lancet Reg Health Eur ; 11: 100262, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1499011
6.
Microorganisms ; 9(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1323308

RESUMEN

Human parainfluenza viruses (HPIVs) are important causes of respiratory illness, especially in young children. However, surveillance for HPIV is rarely performed continuously, and national-level epidemiologic and genetic data are scarce. Within the German sentinel system, to monitor acute respiratory infections (ARI), 4463 respiratory specimens collected from outpatients < 5 years of age between October 2015 and September 2019 were retrospectively screened for HPIV 1-4 using real-time PCR. HPIV was identified in 459 (10%) samples. HPIV-3 was the most common HPIV-type, with 234 detections, followed by HPIV-1 (113), HPIV-4 (61), and HPIV-2 (49). HPIV-3 was more frequently associated with age < 2 years, and HPIV-4 was more frequently associated with pneumonia compared to other HPIV types. HPIV circulation displayed distinct seasonal patterns, which appeared to vary by type. Phylogenetic characterization clustered HPIV-1 in Clades 2 and 3. Reclassification was performed for HPIV-2, provisionally assigning two distinct HPIV-2 groups and six clades, with German HPIV-2s clustering in Clade 2.4. HPIV-3 clustered in C1, C3, C5, and, interestingly, in A. HPIV-4 clustered in Clades 2.1 and 2.2. The results of this study may serve to inform future approaches to diagnose and prevent HPIV infections, which contribute substantially to ARI in young children in Germany.

7.
Lancet Reg Health Eur ; 6: 100112, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1260816

RESUMEN

BACKGROUND: During the initial COVID-19 response, Germany's Federal Government implemented several nonpharmaceutical interventions (NPIs) that were instrumental in suppressing early exponential spread of SARS-CoV-2. NPI effect on the transmission of other respiratory viruses has not been examined at the national level thus far. METHODS: Upper respiratory tract specimens from 3580 patients with acute respiratory infection (ARI), collected within the nationwide German ARI Sentinel, underwent RT-PCR diagnostics for multiple respiratory viruses. The observation period (weeks 1-38 of 2020) included the time before, during and after a far-reaching contact ban. Detection rates for different viruses were compared to 2017-2019 sentinel data (15350 samples; week 1-38, 11823 samples). FINDINGS: The March 2020 contact ban, which was followed by a mask mandate, was associated with an unprecedented and sustained decline of multiple respiratory viruses. Among these, rhinovirus was the single agent that resurged to levels equalling those of previous years. Rhinovirus rebound was first observed in children, after schools and daycares had reopened. By contrast, other nonenveloped viruses (i.e. gastroenteritis viruses reported at the national level) suppressed after the shutdown did not rebound. INTERPRETATION: Contact restrictions with a subsequent mask mandate in spring may substantially reduce respiratory virus circulation. This reduction appears sustained for most viruses, indicating that the activity of influenza and other respiratory viruses during the subsequent winter season might be low,whereas rhinovirus resurgence, potentially driven by transmission in educational institutions in a setting of waning population immunity, might signal predominance of rhinovirus-related ARIs. FUNDING: Robert Koch-Institute and German Ministry of Health.

8.
Virol J ; 18(1): 110, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1255943

RESUMEN

BACKGROUND: The reliable detection of SARS-CoV-2 has become one of the most important contributions to COVID-19 crisis management. With the publication of the first sequences of SARS-CoV-2, several diagnostic PCR assays have been developed and published. In addition to in-house assays the market was flooded with numerous commercially available ready-to-use PCR kits, with both approaches showing alarming shortages in reagent supply. AIM: Here we present a resource-efficient in-house protocol for the PCR detection of SARS-CoV-2 RNA in patient specimens (RKI/ZBS1 SARS-CoV-2 protocol). METHODS: Two duplex one-step real-time RT-PCR assays are run simultaneously and provide information on two different SARS-CoV-2 genomic regions. Each one is duplexed with a control that either indicates potential PCR inhibition or proves the successful extraction of nucleic acid from the clinical specimen. RESULTS: Limit of RNA detection for both SARS-CoV-2 assays is below 10 genomes per reaction. The protocol enables testing specimens in duplicate across the two different SARS-CoV-2 PCR assays, saving reagents by increasing testing capacity. The protocol can be run on various PCR cyclers with several PCR master mix kits. CONCLUSION: The presented RKI/ZBS1 SARS-CoV-2 protocol represents a cost-effective alternative in times of shortages when commercially available ready-to-use kits may not be available or affordable.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , Proteínas de la Envoltura de Coronavirus/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Límite de Detección , Poliproteínas/genética , ARN Viral/genética , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Proteínas Virales/genética
9.
Mol Cell Probes ; 58: 101742, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1220955

RESUMEN

Point of care detection of SARS-CoV-2 is one pillar in a containment strategy and important to break infection chains. Here we report the sensitive, specific and robust detection of SARS-CoV-2 and respective variants of concern by the ID NOW COVID-19 device.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Sistemas de Atención de Punto , SARS-CoV-2/genética , COVID-19/virología , Técnicas de Laboratorio Clínico/métodos , Humanos , Reproducibilidad de los Resultados , SARS-CoV-2/fisiología , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA